Getting to Grips with Socket APIs

In this chapter, we will begin to really start working with network
programming. We will introduce the concept of sockets, and explain a bit of
the history behind them. We will cover the important differences between the
socket APIs provided by Windows and Unix-like operating systems, and we
will review the common functions that are used in socket programming. This
chapter ends with a concrete example of turning a simple console program
into a networked program you can access through your web browser.

The following topics are covered in this chapter:

What are sockets?

Which header files are used with socket programming?

How to compile a socket program on Windows, Linux, and macOS
Connection-oriented and connectionless sockets

TCP and UDP protocols

Common socket functions

Building a simple console program into a web server

Technical requirements

The example programs in this chapter can be compiled with any modern C
compiler. We recommend MinGW on Windows and GCC on Linux and
macOS. See appenaix 5, Setting Up Your C Compiler On Windows, rppendix c,
Setting Up Your C Compiler On Linux, and zppendix o, Setting Up Your C
Compiler On macOS, for compiler setup.

The code for this book can be found here: ntcps://github. com/codeplea/nands-on-Ne

twork-Programming-with-C.

From the command line, you can download the code for this chapter with the
following command:

git clone https://github.com/codeplea/Hands-On-Network-Programming-with-C
cd Hands-On-Network-Programming-with-C/chap02

Each example program in this chapter is standalone, and each example runs
on Windows, Linux, and macOS. When compiling for Windows, keep in
mind that most of the example programs require linking with the Winsock
library.

This is accomplished by passing the -1ws2 32 option to gcc. We provide the
exact commands needed to compile each example as they are introduced.

What are sockets?

A socket 1s one endpoint of a communication link between systems. Your
application sends and receives all of its network data through a socket.

There are a few different socket application programming interfaces
(APIs). The first were Berkeley sockets, which were released in 1983 with
4.3BSD Unix. The Berkeley socket API was widely successful and quickly
evolved into a de facto standard. From there, it was adopted as a POSIX
standard with little modification. The terms Berkeley sockets, BSD sockets,
Unix sockets, and Portable Operating System Interface (POSIX) sockets
are often used interchangeably.

If you're using Linux or macOS, then your operating system provides a proper
implementation of Berkeley sockets.

Windows' socket API is called Winsock. It was created to be largely
compatible with Berkeley sockets. In this book, we strive to create cross-
platform code that is valid for both Berkeley sockets and Winsock.

Historically, sockets were used for inter-process communication (IPC) as
well as various network protocols. In this book, we use sockets only for
communication with TCP and UDP.

Before we can start using sockets, we need to do a bit of setup. Let's dive

right in!

Socket setup

Before we can use the socket API, we need to include the socket API header
files. These files vary depending on whether we are using Berkeley sockets
or Winsock. Additionally, Winsock requires initialization before use. It also
requires that a cleanup function i1s called when we are finished. These
initialization and cleanup steps are not used with Berkeley sockets.

We will use the C preprocessor to run the proper code on Windows
compared to Berkeley socket systems. By using the preprocessor statement,
#if defined (wIn32), W€ can include code in our program that will only be
compiled on Windows.

Here is a complete program that includes the needed socket API headers for
each platform and properly initializes Winsock on Windows:

/*sock_init.c*/

#if defined(WIN32)

#ifndef WIN32 WINNT

#define WIN32 WINNT 0x0600
#endif

#include <winsock2.h>

#include <ws2tcpip.h>

#pragma comment (1ib, "ws2 32.1ib")

#else

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <unistd.h>
#include <errno.h>

fendif

#include <stdio.h>

int main() {

#if defined(WIN32)
WSADATA d;

if (WSAStartup (MAKEWORD (2, 2), &d)) {
fprintf (stderr, "Failed to initialize.\n");

return 1;

}
fendif

printf ("Ready to use socket API.\n");
#if defined(WIN32)

WSACleanup () ;

#endif

return 0;

}

The first part includes winsock.n and ws2tcpip.n on Windows. wrws2 wnwr must
be defined for the Winsock headers to provide all the functions we need. We
also include the #pragma comment (1in, "ws2_32.1ip") pragma statement. This tells
the Microsoft Visual C compiler to link your program against the Winsock
library, ws2_32.110. If you're using MinGW as your compiler, then #pragma is
ignored. In this case, you need to tell the compiler to link in ws2_32.115 on the
command line using the -1ws2 32 option.

If the program is not compiled on Windows, then the section after te1se will
compile. This section includes the various Berkeley socket API headers and
other headers we need on these platforms.

In the main() function, we call wsastartup) on Windows to initialize Winsock.
The waxenoro macro allows us to request Winsock version 2.2. If our program
is unable to initialize Winsock, it prints an error message and aborts.

When using Berkeley sockets, no special initialization is needed, and the
socket API is always ready to use.

Before our program finishes, wsacieanup) 1s called if we're compiling for
Winsock on Windows. This function allows the Windows operating system to
do additional cleanup.

Compiling and running this program on Linux or macOS is done with the
following command:

gcc sock _init.c -o sock_init
./sock_init

Compiling on Windows using MinGW can be done with the following
command:

gcc sock init.c -o sock_init.exe -lws2 32
sock init.exe

Notice that the -1vs2_32 flag is needed with MinGW to tell the compiler to link
in the Winsock library, ws2 32.1i0.

Now that we've done the necessary setup to begin using the socket APIs, let's
take a closer look at what we will be using these sockets for.

Two types of sockets

Sockets come in two basic types—connection-oriented and connectionless.
These terms refer to types of protocols. Beginners sometimes get confused
with the term connectionless. Of course, two systems communicating over a
network are in some sense connected. Keep in mind that these terms are used
with special meanings, which we will cover shortly, and should not imply
that some protocols manage to send data without a connection.

The two protocols that are used today are Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP). TCP is a connection-
oriented protocol, and UDP is a connectionless protocol.

The socket APIs also support other less-common or outdated protocols,
which we do not cover in this book.

In a connectionless protocol, such as UDP, each data packet is addressed
individually. From the protocol's perspective, each data packet is completely
independent and unrelated to any packets coming before or after it.

A good analogy for UDP is postcards. When you send a postcard, there is no
guarantee that it will arrive. There is also no way to know if it did arrive. If
you send many postcards at once, there is no way to predict what order they
will arrive in. It is entirely possible that the first postcard you send gets
delayed and arrives weeks after the last postcard was sent.

With UDP, these same caveats apply. UDP makes no guarantee that a packet
will arrive. UDP doesn't generally provide a method to know if a packet did
not arrive, and UDP does not guarantee that the packets will arrive in the
same order they were sent. As you can see, UDP is no more reliable than
postcards. In fact, you may consider it less reliable, because with UDP, it is
possible that a single packet may arrive twice!

If you need reliable communication, you may be tempted to develop a scheme
where you number each packet that's sent. For the first packet sent, you
number it one, the second packet sent is numbered two, and so on. You could
also request that the receiver send an acknowledgment for each packet. When
the receiver gets packet one, it sends a return message, packet one received.
In this way, the receiver can be sure that received packets are in the proper
order. If the same packet arrives twice, the receiver can just ignore the
redundant copy. If a packet isn't received at all, the sender knows from the
missing acknowledgment and can resend it.

This scheme is essentially what connection-oriented protocols, such as TCP,
do. TCP guarantees that data arrives in the same order it is sent. It prevents
duplicate data from arriving twice, and it retries sending missing data. It also
provides additional features such as notifications when a connection is
terminated and algorithms to mitigate network congestion. Furthermore, TCP
implements these features with an efficiency that is not achievable by
piggybacking a custom reliability scheme on top of UDP.

For these reasons, TCP is used by many protocols. HTTP (for severing web
pages), FTP (for transferring files), SSH (for remote administration), and

SMTP (for delivering email) all use TCP. We will cover HTTP, SSH, and
SMTP in the coming chapters.

UDP is used by DNS (for resolving domain names). It is suitable for this
purpose because an entire request and response can fit in a single packet.

UDP is also commonly used in real-time applications, such as audio
streaming, video streaming, and multiplayer video games. In real-time
applications, there is often no reason to retry sending dropped packets, so
TCP's guarantees are unnecessary. For example, if you are streaming live
video and a few packets get dropped, the video simply resumes when the
next packet arrives. There is no reason to resend (or even detect) the
dropped packet, as the video has already progressed past that point.

UDP also has the advantage in cases where you want to send a message
without expecting a response from the other end. This makes it useful when

using IP broadcast or multicast. TCP, on the other hand, requires
bidirectional communication to provide its guarantees, and TCP does not
work with IP multicast or broadcast.

If the guarantees that TCP provides are not needed, then UDP can achieve
greater efficiency. This is because TCP adds some additional overhead by
numbering packets. TCP must also delay packets that arrive out of order,
which can cause unnecessary delays in real-time applications. If you do need
the guarantees provided by TCP, however, it is almost always preferable to
use TCP instead of trying to add those mechanisms to UDP.

Now that we have an idea of the communication models we use sockets for,
let's look at the actual functions that are used in socket programming.

Socket functions

The socket APIs provide many functions for use in network programming.
Here are the common socket functions that we use in this book:

e socket () creates and initializes a new socket.

e vind() associates a socket with a particular local IP address and port
number.

e 1isten() 1S USed on the server to cause a TCP socket to listen for new
connections.

e connect () 1S Used on the client to set the remote address and port. In the
case of TCP, it also establishes a connection.

e accept () 1S Used on the server to create a new socket for an incoming
TCP connection.

e send() and recv() are used to send and receive data with a socket.

® sendto() and recverom() are used to send and receive data from sockets
without a bound remote address.

e ciose() (Berkeley sockets) and ciosesocket 0 (Winsock sockets) are used
to close a socket. In the case of TCP, this also terminates the connection.

e shutdown () 1S Used to close one side of a TCP connection. It is useful to
ensure an orderly connection teardown.

e sclect () 1S USsed to wait for an event on one or more sockets.

® getnameinfo() @Nd getaddrinto() provide a protocol-independent manner of
working with hostnames and addresses.

e setsockopt () 1S Used to change some socket options.

e rone1() (Berkeley sockets) and ioctisocket () (Winsock sockets) are also
used to get and set some socket options.

You may see some Berkeley socket networking programs using reaqa() and
write (). These functions don't port to Winsock, so we prefer sena() and recv ()
here. Some other common functions that are used with Berkeley sockets
are po11 () and auwp (). We will avoid these in order to keep our programs
portable.

Other differences between Berkeley sockets and Winsock sockets are
addressed later in this chapter.

Now that we have an idea of the functions involved, let's consider program
design and flow next.

Anatomy of a socket program

As we mentioned in chapter 1, An Introduction to Networks and Protocols,
network programming is usually done using a client-server paradigm. In this
paradigm, a server listens for new connections at a published address. The
client, knowing the server's address, is the one to establish the connection
initially. Once the connection is established, the client and the server can
both send and receive data. This can continue until either the client or the
server terminates the connection.

A traditional client-server model usually implies different behaviors for the
client and server. The way web browsing works, for example, is that the
server resides at a known address, waiting for connections. A client (web
browser) establishes a connection and sends a request that includes which
web page or resource it wants to download. The server then checks that it
knows what to do with this request and responds appropriately (by sending
the web page).

An alternative paradigm is the peer-to-peer model. For example, this model
1s used by the BitTorrent protocol. In the peer-to-peer model, each peer has
essentially the same responsibilities. While a web server 1s optimized to
send requested data from the server to the client, a peer-to-peer protocol is
balanced in that data is exchanged somewhat evenly between peers.
However, even in the peer-to-peer model, the underlying sockets that are
using TCP or UDP aren't created equal. That is, for each peer-to-peer
connection, one peer was listening and the other connecting. BitTorrent
works by having a central server (called a tracker) that stores a list of peer
IP addresses. Each of the peers on that list has agreed to behave like a server
and listen for new connections. When a new peer wants to join the swarm, it
requests a list of peers from the central server, and then tries to establish a
connection to peers on that list while simultaneously listening for new
connections from other peers. In summary, a peer-to-peer protocol doesn't so
much replace the client-server model; it 1s just expected that each peer be a
client and a server both.

Another common protocol that pushes the boundary of the client-server
paradigmis FTP. The FTP server listens for connections until the FTP client
connects. After the initial connection, the FTP client issues commands to the
server. If the FTP client requests a file from the server, the server will
attempt to establish a new connection to the FTP client to transfer the file
over. So, for this reason, the FTP client first establishes a connection as a
TCP client, but later accepts connections like a TCP server.

Network programs can usually be described as one of four types—a TCP
server, a TCP client, a UDP server, or a UDP client. Some protocols call for
a program to implement two, or even all four types, but it is useful for us to
consider each of the four types separately.

TCP program flow

A TCP client program must first know the TCP server's address. This 1s
often input by a user. In the case of a web browser, the server address is
either input directly by the user into the address bar, or is known from the
user clicking on a link. The TCP client takes this address (for example,
http://example.com) and uses the getaddrinfo () function to resolve it into a struct
addrinto structure. The client then creates a socket using a call to socket (). The
client then establishes the new TCP connection by calling connect (). At this
point, the client can freely exchange data using sena() and recv).

A TCP server listens for connections at a particular port number on a
particular interface. The program must first initialize a struct addrinfo
structure with the proper listening IP address and port number. The
getaddrinfo () function is helpful so that you can do this in an [Pv4/IPv6
independent way. The server then creates the socket with a call to socket ().
The socket must be bound to the listening IP address and port. This is
accomplished with a call to vina().

The server program then calls 1isten (), which puts the socket in a state where
1t listens for new connections. The server can then call accept (), which will
wait until a client establishes a connection to the server. When the new
connection has been established, accept () returns a new socket. This new
socket can be used to exchange data with the client using sena() and recv).
Meanwhile, the first socket remains listening for new connections, and
repeated calls to accept) allow the server to handle multiple clients.

Graphically, the program flow of a TCP client and server looks like this:

Server

e —— =
getaddrinfo()
\ 4
socket()
Client
\ 4
bind()
~N~— A 4
listen()
getaddrinfo()
l A\ 4
accept()
socket()

7 |

» Wwait for connection
from client

connect()

l l

Data (request)
send() > recv()
process
request
v y

Data (response)
recv() < send()

v !

close() close()

The program flow given here should serve as a good example of how basic
client-server TCP programs interact. That said, considerable variation on
this basic program flow is possible. There is also no rule about which side
calls sena() OF recv () first, or how many times. Both sides could call sena() as
soon as the connection is established.

Also, note that the TCP client could call vina() before connect () 1f 1t 18
particular about which network interface is being used to connect with. This
1s sometimes important on servers that have multiple network interfaces. It's
often not important for general purpose software.

Many other variations of TCP operation are possible too, and we will look
at some in chapter 3, An In-Depth Overview of TCP Connections.

UDP program flow

A UDP client must know the address of the remote UDP peer in order to send
the first packet. The UDP client uses the getaddrinto() function to resolve the
address 1nto a struct addarinfo Structure. Once this 1s done, the client creates a
socket of the proper type. The client can then call senato () on the socket to
send the first packet. The client can continue to call senato() and recverom() ON
the socket to send and receive additional packets. Note that the client must
send the first packet with senato (). The UDP client cannot receive data first,
as the remote peer would have no way of knowing where to send data
without it first receiving data from the client. This is different from TCP,
where a connection is first established with a handshake. In TCP, either the
client or server can send the first application data.

A UDP server listens for connections from a UDP client. This server should
initialize struct adarinfo structure with the proper listening IP address and port
number. The getaaarinto () function can be used to do this in a protocol-
independent way. The server then creates a new socket with socket () and
binds it to the listening IP address and port number using nina(). At this point,
the server can call recveron(), Which causes it to block until it receives data
from a UDP client. After the first data is received, the server can reply with
sendto () OF listen for more data (from the first client or any new client) with

recvfrom().

Graphically, the program flow of a UDP client and server looks like this:

Server

_

Client =L
|
getaddrinfo()

v

getaddrinfo() socket()
socket() bind()

v v

Data (request)
sendto() > recvfrom()

'

process
request

v |

Data (response)
recvfrom() < sendto()
close() close()

We cover some variations of this example program flow in chapter 4,
Establishing UDP Connections.

We're almost ready to begin implementing our first networked program, but
before we begin, we should take care of some cross-platform concerns. Let's

work on this now.

Berkeley sockets versus Winsock
sockets

As we stated earlier, Winsock sockets were modeled on Berkeley sockets.
Therefore, there are many similarities between them. However, there are
also many differences we need to be aware of.

In this book, we will try to create each program so that it can run on both
Windows and Unix-based operating systems. This is made much easier by
defining a few C macros to help us with this.

Header files

As we mentioned earlier, the needed header files differ between
implementations. We've already seen how these header file discrepancies
can be easily overcome with a preprocessor statement.

Socket data type

In UNIX, a socket descriptor is represented by a standard file descriptor.
This means you can use any of the standard UNIX file I/O functions on
sockets. This isn't true on Windows, so we simply avoid these functions to
maintain portability.

Additionally, in UNIX, all file descriptors (and therefore socket descriptors)
are small, non-negative integers. In Windows, a socket handle can be
anything. Furthermore, in UNIX, the socket () function returns an int, whereas
1in Windows it returns a socker. socker 1S @ typeder fOr @n unsigned int 1N the
Winsock headers. As a workaround, I find it useful to either typedes int socker
Or #define socker int ON NON-Windows platforms. That way, you can store a
socket descriptor as a socker type on all platforms:

#if !defined(WIN32)
#define SOCKET int
#fendif

Invalid sockets

On Windows, socket () returns mwarip socker 1f 1t fails. On UniX, socket () returns
a negative number on failure. This is particularly problematic as the
Windows socker type 1s unsigned. I find it useful to define a macro to indicate
if'a socket descriptor is valid or not:

#if defined(WIN32)

#define ISVALIDSOCKET (s) ((s) != INVALID SOCKET)
#else
#define ISVALIDSOCKET (s) ((s) >= 0)

fendif

Closing sockets

All sockets on Unix systems are also standard file descriptors. For this
reason, sockets on Unix systems can be closed using the standard ciose ()
function. On Windows, a special close function is used instead——ciosesocket ().
It's useful to abstract out this difference with a macro:

#if defined(WIN32)

#define CLOSESOCKET (s) closesocket (s)
#else

#define CLOSESOCKET (s) close(s)
fendif

Error handling

When a socket function, such as socxet (), bind (), accept (), and so on, has an
error on a Unix platform, the error number gets stored in the thread-global
errno variable. On Windows, the error number can be retrieved by calling
wsacetiasterror () 1nStead. Again, we can abstract out this difference using a
macro:

#if defined(WIN32)

#define GETSOCKETERRNO () (WSAGetLastError())
#else

#define GETSOCKETERRNO () (errno)

fendif

In addition to obtaining an error code, it is often useful to retrieve a text
description of the error condition. Please refer to cnapcer 13, Socket
Programming Tips and Pitfalls, for a technique for this.

With these helper macros out of the way, let's dive into our first real socket
program.

Our first program

Now that we have a basic idea of socket APIs and the structure of networked
programs, we are ready to begin our first program. By building an actual
real-world program, we will learn the useful details of how socket
programming actually works.

As an example task, we are going to build a web server that tells you what
time it is right now. This could be a useful resource for anybody with a
smartphone or web browser that needs to know what time it is right now.
They can simply navigate to our web page and find out. This is a good first
example because it does something useful but still trivial enough that it won't
distract from what we are trying to learn—network programming.

A motivating example

Before we begin the networked program, it is useful to solve our problem
with a simple console program first. In general, it is a good idea to work out
your program's functionality locally before adding in networked features.

The local, console version of our time-telling program is as follows:

/*time console.c*/

#include <stdio.h>
#include <time.h>

int main ()

{
time t timer;
time (&timer) ;

printf ("Local time is: %s", ctime (&timer));

return 0;

You can compile and run it like this:

$ gcc time console.c -o time_console
$./time_console
Local time is: Fri Oct 19 08:42:05 2018

The program works by getting the time with the built-in C tine () function. It
then converts it into a string with the ctire () function.

Making it networked

Now that we've worked out our program's functionality, we can begin on the
networked version of the same program.

To begin with, we include the needed headers:

/*time server.c*/

#if defined(WIN32)

#ifndef WIN32 WINNT

#define WIN32 WINNT 0x0600
fendif

#include <winsock2.h>

#include <ws2tcpip.h>

#pragma comment (lib, "ws2 32.1ib")

#else

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <unistd.h>
#include <errno.h>

fendif

As we discussed earlier, this detects if the compiler is running on Windows or
not and includes the proper headers for the platform it is running on.

We also define some macros, which abstract out some of the difference
between the Berkeley socket and Winsock APIs:

/*time server.c continued*/

#if defined(WIN32)

#define ISVALIDSOCKET (s) ((s) != INVALID SOCKET)
#define CLOSESOCKET (s) closesocket (s)

#define GETSOCKETERRNO () (WSAGetLastError())

#else

#define ISVALIDSOCKET (s) ((s) >= 0)
#define CLOSESOCKET (s) close(s)
#define SOCKET int

#define GETSOCKETERRNO () (errno)
fendif

We need a couple of standard C headers, hopefully for obvious reasons:

/*time server.c continued*/

#include <stdio.h>
#include <string.h>
#include <time.h>

Now, we are ready to begin the nain() function. The first thing the main ()
function will do 1is initialize Winsock if we are compiling on Windows:

/*time server.c continued*/
int main () {

#if defined(WIN32)
WSADATA d;
if (WSAStartup (MAKEWORD (2, 2), &d)) {
fprintf (stderr, "Failed to initialize.\n");
return 1;
}
#endif

We must now figure out the local address that our web server should bind to:

/*time server.c continued*/

printf ("Configuring local address...\n");
struct addrinfo hints;

memset (&¢hints, 0, sizeof (hints));
hints.ai family = AF INET;

hints.ai socktype = SOCK STREAM;

hints.ai flags = AI PASSIVE;

struct addrinfo *bind address;
getaddrinfo (0, "8080", &hints, &bind address);

We us€ getaddrinfo() tO fill 1n @ struct addrinfo Structure with the needed
information. getadarinfo() takes a nints parameter, which tells it what we're
looking for. In this case, we've zeroed out hints USING nenset () first. Then, we
setai family = ar ver. ar 1ner Specifies that we are looking for an IPv4 address.
We could use »r 1vers to make our web server listen on an IPv6 address
instead (more on this later).

Next, we set ai_socktype = sock streav. This indicates that we're going to be
using TCP. socx_ncran would be used if we were doing a UDP server instead.
Finally, ai fiags = ar_rasstve 1S set. This is telling getaaarinto () that we want it to

bind to the wildcard address. That is, we are asking getaaarino() to set up the
address, so we listen on any available network interface.

Once nints 1S set up properly, we declare a pointer to a struct addrinfo
structure, which holds the return information from getaddrinzo (). We then call
the getaddrinto) function. The getadarinto() function has many uses, but for our
purpose, it generates an address that's suitable for nina(). To make it generate
this, we must pass in the first parameter as nvrr and have the a1 easstve flag set

1N hints.ai flags.

The second parameter to getadarinto() 18 the port we listen for connections on.
A standard HTTP server would use port so. However, only privileged users
on Unix-like operating systems can bind to ports o through 1023. The choice of
port number here is arbitrary, but we use soso to avoid issues. If you are
running with superuser privileges, feel free to change the port number to so if
you like. Keep in mind that only one program can bind to a particular port at a
time. If you try to use a port that is already in use, then the call to vina() fails.
In this case, just change the port number to something else and try again.

It i1s common to see programs that don't use getaaarinto () here. Instead, they fill
1N a struct addrinfo Structure directly. The advantage to using getadarinto() 18 that
it is protocol-independent. Using getaddrinfo () makes it very easy to convert
our program from IPv4 to IPv6. In fact, we only need to change »r rwer to
ar_vere, and our program will work on IPv6. If we filled in the struct addarinto
structure directly, we would need to make many tedious changes to convert
our program into [Pv6.

Now that we've figured out our local address info, we can create the socket:

/*time server.c continued*/

printf ("Creating socket...\n");
SOCKET socket listen;
socket listen = socket (bind address->ai family,
bind address->ai socktype, bind address->ai protocol);

Here, we define socket 1isten as a socker type. Recall that socker 1s @ Winsock
type on Windows, and that we have a macro defining it as int on other
platforms. We call the socxet () function to generate the actual socket. socket ()

takes three parameters: the socket family, the socket type, and the socket
protocol. The reason we used getaaarinto () before calling socket () 1s that we
can now pass in parts of bind address as the arguments to socket (). Again, this
makes it very easy to change our program's protocol without needing a major
rewrite.

It is common to see programs written so that they call socket () first. The
problem with this is that it makes the program more complicated as the socket
family, type, and protocol must be entered multiple times. Structuring our
program as we have here is better.

We should check that the call to socxet () Was successful:

/*time server.c continued*/

if (!ISVALIDSOCKET (socket listen)) {
fprintf (stderr, "socket() failed. (%d)\n", GETSOCKETERRNO ()) ;
return 1;

We can check that socxet 1isten 1 valid using the rsvarrpsocker () macro we
defined earlier. If the socket is not valid, we print an error message. Our
GETSOCKETERRNO () MACTO 18 used to retrieve the error number in a cross-platform
way.

After the socket has been created successfully, we can call vina() to associate
it with our address from getaddrinfo():

/*time server.c continued*/

printf ("Binding socket to local address...\n");
if (bind(socket listen,
bind address->ai addr, bind address->ai addrlen)) {
fprintf (stderr, "bind() failed. (%d)\n", GETSOCKETERRNO()) ;
return 1;
}

freeaddrinfo (bind address);

pind () Teturns o on success and non-zero on failure. If it fails, we print the error
number much like we did for the error handling on socket (). vina() fails if the
port we are binding to 1s already in use. In that case, either close the program
using that port or change your program to use a different port.

After we have bound to bina addaress, we can call the frecadarino () function to
release the address memory.

Once the socket has been created and bound to a local address, we can cause
it to start listening for connections with the 1isten () function:

/*time server.c continued*/

printf ("Listening...\n");

if (listen(socket listen, 10) < 0) {
fprintf (stderr, "listen() failed. (%d)\n", GETSOCKETERRNO()) ;
return 1;

The second argument to 1isten (), Which is 10 in this case, tells 1isten() how
many connections it is allowed to queue up. If many clients are connecting to
our server all at once, and we aren't dealing with them fast enough, then the
operating system begins to queue up these incoming connections. If 10
connections become queued up, then the operating system will reject new
connections until we remove one from the existing queue.

Error handling for 1isten() 1s done the same way as we did for vina() and

socket ().

After the socket has begun listening for connections, we can accept any
incoming connection with the accept () function:

/*time server.c continued*/

printf ("Waiting for connection...\n");
struct sockaddr storage client_address;
socklen t client len = sizeof (client address);
SOCKET socket client = accept (socket listen,
(struct sockaddr*) &client address, &client len);
if (!ISVALIDSOCKET (socket client)) {
fprintf (stderr, "accept() failed. (%d)\n", GETSOCKETERRNO()) ;
return 1;

accept () has a few functions. First, when it's called, it will block your program
until a new connection is made. In other words, your program will sleep until
a connection is made to the listening socket. When the new connection is
made, accept () Will create a new socket for it. Your original socket continues
to listen for new connections, but the new socket returned by accept () can be

used to send and receive data over the newly established connection.
accept () also fills in address info of the client that connected.

Before calling accept (), we must declare a new struct sockaddr storage variable
to store the address info for the connecting client. The struct sockaddr storage
type is guaranteed to be large enough to hold the largest supported address on
your system. We must also tell accept () the size of the address buffer we're
passing in. When accept () returns, it will have filled in ciient adaress with the
connected client's address and ciient_1en With the length of that address.
crient_len differs, depending on whether the connection is using I[Pv4 or [Pv6.

We store the return value of accept () 1N socket c1ient. We check for errors by
detecting if ciient socket 18 a valid socket. This 1s done in exactly the same way
as we did for socket ().

At this point, a TCP connection has been established to a remote client. We
can print the client's address to the console:

/*time server.c continued*/

printf ("Client is connected... ");

char address buffer[100];

getnameinfo ((struct sockaddr*)&client address,
client len, address buffer, sizeof (address buffer), 0, 0,
NI NUMERI CHOST) ;

printf ("$s\n", address buffer);

This step is completely optional, but it is good practice to log network
connections somewhere.

getnameinfo () takes the client's address and address length. The address length
is needed because getnameinto() can work with both IPv4 and IPv6 addresses.
We then pass in an output buffer and buffer length. This is the buffer that
getnameinfo () WT1tes 1ts hostname output to. The next two arguments specify a
second buffer and its length. getnameinto () Outputs the service name to this
buffer. We don't care about that, so we've passed in o for those two
parameters. Finally, we pass in the n1_wouericrost flag, which specifies that we
want to see the hostname as an IP address.

As we are programming a web server, we expect the client (for example, a
web browser) to send us an HTTP request. We read this request using the
recv () function:

/*time server.c continued*/

printf ("Reading request...\n");

char request[1024];

int bytes received = recv(socket client, request, 1024, 0);
printf ("Received %d bytes.\n", bytes received);

We define a request buffer, so that we can store the browser's HTTP request.
In this case, we allocate 1,024 bytes to it, which should be enough for this
application. recv () 1s then called with the client's socket, the request buffer,
and the request buffer size. recv() returns the number of bytes that are received.
If nothing has been received yet, recv() blocks until it has something. If the
connection is terminated by the client, recv() returns o or -1, depending on the
circumstance. We are ignoring that case here for simplicity, but you should
always check that recv () > o in production. The last parameter to recv() 1s for
flags. Since we are not doing anything special, we simply pass in o.

The request received from our client should follow the proper HTTP
protocol. We will go into detail about HTTP in chapeer 6, Building a Simple
Web Client, and crapter 7, Building a Simple Web Server, where we will work
on web clients and servers. A real web server would need to parse the
request and look at which resource the web browser is requesting. Our web
server only has one function—to tell us what time it is. So, for now, we just
ignore the request altogether.

If you want to print the browser's request to the console, you can do it like
this:

| printf ("%.*s", bytes received, request);

Note that we use the printe() format string, »=.«s». This tells printe() that we
want to print a specific number of characters—oytes receivea. It 1s @ common
mistake to try printing data that's received from recv() directly as a C string.
There is no guarantee that the data received from recv () 1s null terminated! If
you try to print it With printf (request) OT printf ("ss", request), you will likely
receive a segmentation fault error (or at best it will print some garbage).

Now that the web browser has sent its request, we can send our response
back:

/*time server.c continued*/

printf ("Sending response...\n");

const char *response =
"HTTP/1.1 200 OK\r\n"
"Connection: close\r\n"
"Content-Type: text/plain\r\n\r\n"
"Local time is: "

int bytes sent = send(socket client, response, strlen(response), 0);
printf ("Sent %d of %d bytes.\n", bytes sent, (int)strlen(response));

To begin with, we set char *response t0 a standard HTTP response header and
the beginning of our message (1oca1 time is:). We will discuss HTTP in detail
N chepter 6, Building a Simple Web Client, and chapter 7, Building a Simple
Web Server. For now, know that this response tells the browser three things—
your request is OK; the server will close the connection when all the data is
sent and the data you receive will be plain text.

The HTTP response header ends with a blank line. HTTP requires line
endings to take the form of a carriage return character, followed by a newline
character. So, a blank line in our response is \r\n. The part of the string that
comes after the blank line, roca1 tine is:, s treated by the browsers as plain
text.

We send the data to the client using the sena() function. This function takes the
client's socket, a pointer to the data to be sent, and the length of the data to
send. The last parameter to <ena() 1s flags. We don't need to do anything
special, so we pass in o.

send () Teturns the number of bytes sent. You should generally check that the
number of bytes sent was as expected, and you should attempt to send the rest
if it's not. We are ignoring that detail here for simplicity. (Also, we are only
attempting to send a few bytes; if sena() can't handle that, then something 1s
probably very broken, and resending won't help.)

After the HTTP header and the beginning of our message is sent, we can send
the actual time. We get the local time the same way we did in time console.c,
and we send it using sena () :

/*time server.c continued*/

time t timer;

time (&timer) ;

char *time msg = ctime (&timer);

bytes sent = send(socket client, time msg, strlen(time msg), 0);
printf ("Sent %d of %d bytes.\n", bytes sent, (int)strlen(time msg));

We must then close the client connection to indicate to the browser that we've
sent all of our data:

/*time server.c continued*/

printf ("Closing connection...\n");
CLOSESOCKET (socket client);

If we don't close the connection, the browser will just wait for more data until
1t times out.

At this point, we could call accept () ON socket 1isten to accept additional
connections. That is exactly what a real server would do. However, as this is
just a quick example program, we will instead close the listening socket too
and terminate the program:

/*time server.c continued*/
printf ("Closing listening socket...\n");

CLOSESOCKET(socket_listen);

#if defined(WIN32)
WSACleanup () ;
#endif

printf ("Finished.\n");

return 0;

That's the complete program. After you compile and run it, you can navigate a
web browser to it, and it'll display the current time.

On Linux and macOS, you can compile and run the program like this:

gcc time_server.c -o time_ server
./time_server

On Windows, you can compile and run with MinGW using these commands:

gcc time_server.c -o time server.exe -lws2_ 32
time_server

When you run the program, it waits for a connection. You can open a web
browser and navigate to ntp://127.0.0.1:8080 to load the web page. Recall that
127.0.0.1 18 the [Pv4 loopback address, which connects to the same machine
it's running on. The :soso part of the URL specifies the port number to connect
to. If it were left out, your browser would default to port so, which is the
standard for HTTP connections.

Here 1s what you should see if you compile and run the program, and then
connect a web browser to it on the same computer:

A nNo |=] Desktop — bash — 80x20 "

ml:Desktop honp$ gcc time_server.c —o time_server B8
ml:Desktop honp$./time_server
Configuring local address...
Creating socket...

Binding socket to local address...
Listening. ..

Waiting for comnection...

Client is connected... 127.8.8.1
Reading request,..

Recelved 320 bytes.

Sending response...

sent 79 of 79 bytes.

sent 25 of 25 bytes.

Closing connection...

Clesing listening socket...
Finished.

ml:Desktocp henp$ l

Here is the web browser connected to our tine server program on port soso:

A+ imuumm le-aw

Local time is: Fri Oct 19 08:42:05 2018

Working with IPv6

Please recall the nints.ai family = ar tver part of tine server.c near the beginning
of the main() function. If this line 1s changed to nints.ai family = ar 1ETs, then
your web server listens for IPv6 connections instead of [Pv4 connections.
This modified file is included in the GitHub repository as tine server ipvé.c.

In this case, you should navigate your web browser to netp://(::11:8080 tO S€€
the web page. ::1 is the IPv6 loopback address, which tells the web browser
to connect to the same machine it's running on. In order to use IPv6 addresses
in URLs, you need to put them in square brackets, (. :so0so0 specifies the port
number in the same way that we did for the IPv4 example.

Here is what you should see when compiling, running, and connecting a web
browser to our time_server ipve Programu

AND |5] Desktop — bash — 80x20 "

ml:Desktop honp$ gocc time _server.c —-p time_server =
ml:Desktop honpd ./time_server

Configuring local address...

Creating socket...

Binding socket to local address...

Listening...
Waiting for cennection...
Cilient is connected... ::1

Reading request...

Received 316 bytes.

Sending response...

sent 79 of 79 bytes.

sent 25 ot 25 bytes.
Closing conmnection...
Closing listening socket...
Finished.

ml:Desktop honp$ l

Here is the web browser that's connected to our server using an I[Pv6 socket:

800 htp://[:11:8080/ -
b |+ @hetp/[:1):8080/ ¢ HQ- Google

Local time is: Fri Oct 19 09:29:29 2018

See time_server ipve.c for the complete program.

Supporting both IPv4 and I1Pv6

It 1s also possible for the listening IPv6 socket to accept IPv4 connections
with a dual-stack socket. Not all operating systems support dual-stack
sockets. With Linux in particular, support varies between distros. If your
operating system does support dual-stack sockets, then I highly recommend
implementing your server programs using this feature. It allows your programs
to communicate with both IPv4 and IPv6 peers while requiring no extra work
on your part.

We can modify time server ipve.c to use dual-stack sockets with only a minor
addition. After the call to socxet () and before the call to vina(), we must clear
the reve_veonwy flag on the socket. This i1s done with the setsockopt () function:

/*time server dual.c excerpt*/

int option = 0;
if (setsockopt (socket listen, IPPROTO IPV6, IPV6 V60ONLY, (void*)&option,
sizeof (option))) {
fprintf (stderr, "setsockopt() failed. (%d)\n", GETSOCKETERRNO()) ;
return 1;

}

We first declare option as an integer and set it to o. teve veonry 1S enabled by
default, so we clear it by setting it to o. setsockopt () 15 called on the listening
socket. We pass in reeroro_teve to tell it what part of the socket we're operating
on, and we pass in reve veonry to tell it which flag we are setting. We then pass
in a pointer to our option and its length. setsockopt () Teturns o on success.

Windows Vista and later supports dual-stack sockets. However, many
Windows headers are missing the definitions for revs veonty. For this reason, it
might make sense to include the following code snippet at the top of the file:

/*time server dual.c excerpt*/

#if !defined (IPV6_V6ONLY)
#define IPV6 V6ONLY 27
#endif

Keep in mind that the socket needs to be initially created as an IPv6 socket.
This 1s accomplished with the nints.ai family = ar mers line in our code.

When an [Pv4 peer connects to our dual-stack server, the connection is
remapped to an [Pv6 connection. This happens automatically and is taken care
of by the operating system. When your program sees the client IP address, it
will still be presented as a special IPv6 address. These are represented by
[Pv6 addresses where the first 96 bits consist of the prefix—ao:0:0:0:0:¢¢¢¢. The
last 32 bits of the address are used to store the [Pv4 address. For example, if
a client connects with the IPv4 address 192.165.2.107, then your dual-stack
server sees it as the [Pv6 address ::¢fe£.192.168.2.107.

Here is what it looks like to compile, run, and connect to time server duai:

ANn \=] Desktop — bash — 80x20 "

ml:Desktop honp$ goc time server_dual.c -o time _server_dual B
ml:Desktop honp$./time_server_dual
Configuring local address...

Creating soccket...

Binding sccket to local address...
Listening. ..

Waiting for coennection...

Elient is connected... :sfrff:127.8.08.1
Reading regquest...

Received 320 bytes.

Sending response...

Sent 79 of 79 bytes.

Sent 25 of 25 bytes.

Closing connection...

Closing listeming socket...

Finished.

ml:Desktop honp$ » l

Here is a web browser connected to our time server aua1 program using the
loopback IPv4 address:

800 htp://127.0.0.1:8080/ af
b |+ Phup/127.0.0.1:8080/ ¢ lQ Google |

Local time is: Fri Oct 19 16:19:39 2018

Notice that the browser is navigating to the IPv4 address 127.0.0.1, but we can

see on the console that the server sees the connection as coming from the IPv6
address ::efe£:127.0.0.1.

See time server auai.c for the complete dual-stack socket server.

Networking with inetd

On Unix-like systems, such as Linux or macOS, a service called inetd can be
used to turn console-only applications into networked ones. You can
configure inetd (with /etc/ineta.cont) With your program's location, port
number, protocol (TCP or UDP), and the user you want it to run as. inetd
will then listen for connections on your desired port. After an incoming
connection is accepted by inetd, it will start your program and redirect all
socket input/output through stain and staout.

Using inetd, we could have tine console.c behave like time server.c with very
minimal changes. We would only need to add in an extra

printf () function with the HTTP response header, read from stain, and
configure inetd.

You may be able to use inetd on Windows through Cygwin or the Windows
Subsystem for Linux.

Summary

In this chapter, we learned about the basics of using sockets for network
programming. Although there are many differences between Berkeley sockets
(used on Unix-like operating systems) and Winsock sockets (used on
Windows), we mitigated those differences with preprocessor statements. In
this way, it was possible to write one program that compiles cleanly on
Windows, Linux, and macOS.

We covered how the UDP protocol is connectionless and what that means.
We learned that TCP, being a connection-oriented protocol, gives some
reliability guarantees, such as automatically detecting and resending lost
packets. We also saw that UDP is often used for simple protocols (for
example, DNS) and for real-time streaming applications. TCP is used for
most other protocols.

After that, we worked through a real example by converting a console
application into a web server. We learned how to write the program using the
getaddrinfo () function, and why that matters for making the program IPv4/IPv6-
agnostic. We used vina(), 1isten(), and accept () ON the server to wait for an
incoming connection from the web browser. Data was then read from the
client using recv (), and a reply was sent using sena (). Finally, we terminated
the connection with ciose () (closesocket () on Windows).

When we built the web server, time server.c, Wwe covered much ground. It's
OK if you didn't understand all of it. We will revisit many of these functions
again throughout chapter 3, An In-Depth Overview of TCP Connections, and
the rest of this book.

In the next chapter, chapter 3, An In-Depth Overview of TCP Connections, we
will consider programming for TCP connections in more depth.

Questions

Try these questions to test your knowledge on this chapter:

1.

What is a socket?

2. What is a connectionless protocol? What is a connection-oriented

wnm B~ W

7.
8.

9.
10.
11.

protocol?

. Is UDP a connectionless or connection-oriented protocol?
. Is TCP a connectionless or connection-oriented protocol?
. What types of applications generally benefit from using the UDP

protocol?

. What types of applications generally benefit from using the TCP

protocol?

Does TCP guarantee that data will be transmitted successfully?

What are some of the main differences between Berkeley sockets and
Winsock sockets?

What does the vina() function do?

What does the accept () function do?

In a TCP connection, does the client or the server send application data
first?

Answers are in zppendix 2, Answers to Questions.

